GENERATING RESEARCH IDEAS
- AN EXPERIMENTAL COMPUTER SCIENCE PERSPECTIVE

Kaj Grønbæk, Professor,
Department of Computer Science,
Ubiquitous Computing and Interaction

http://cs.au.dk/research/areas/ubiquitous-computing-and-interaction/

www.interactivespaces.net

kgronbak@cs.au.dk
"The best way to predict the future is to invent it"

(Alan Kay 1971, at Xerox PARC)

KAY PROPOSED THE DYNABOOK AND
OBJECT-ORIENTED PROGRAMMING WHILE
COMPUTERS WERE CLOSET SIZED AND
FORTRAN/COBOL WERE THE LANGUAGES
UBI GROUP – RESEARCH TOPICS

› Interaction Design
› Interactive Spaces
› Kinesthetic Interaction
› Sensor actuator based interaction
› Augmented Reality
› Ubiquitous and Pervasive Computing
› Positioning (GPS, WiFi,...)
› Context Awareness
› Crowd and Participatory Sensing
› Mobile Computing
› Peer-2-Peer computing,
› Hypermedia, Web, and Social Media
EXPERIMENTAL COMPUTER SCIENCE RESEARCH APPROACH
EXPERIMENTAL COMPUTER SCIENCE

Real world challenges
 · State-of-the-art

Analysis
 > ·

Generalizable results
 >

Advanced State-of-the-art
 Industrial deployment

Evaluation ▲

Some iterations

✓ Design

Prototype

Kaj Grønbæk

APRIL 2015
DEEPER LOOK AT EXPERIMENTAL APPROACH

› Formulate the idea and expected results in terms of hypothesis and/or success criteria
› Investigate state of the art!!

› Create relevance by involving the right real world partners

› Early prototypes and demos are important vehicles

› Deploy mature prototypes in real world settings
 › Evaluate by means of technical benchmarking
 › Evaluate by means of field studies with the users

› Conceptualize, reflect and publish
RESEARCH RESULTS

› Prototypes are only research vehicles and not the final result
 › Some prototypes move into industrial deployments

› Contributions are: theoretical concepts, design concepts, interaction techniques, algorithms, infrastructures, methods, software frameworks,…

› Evaluation in lab and in real world settings
 › Both technical benchmarking and usability evaluations

› Publishing the results
 › New types of interaction or system concepts (Figure 1 before abstract ;-)
 › Evaluation needed
 › The state-of-the-art papers are the baseline for comparison
QUICK EXAMPLE OF CYCLE: ECOSENSE

Macroscopic analysis and collective sensing for understanding and reducing climate impact
COLLECTIVE SENSING AND ETHNOGRAPHIC INQUIRIES IN COMMUNITY HOUSEHOLDS

› Grundfos Dormitory as a Living Lab
› 3000+ energy and climate sensors installed
› Water usage and indoor climate
› Inferring electricity activity based on powerline sensing
› Qualitative analysis of inhabitant energy awareness and behavior
› Analyzing and visualizing data
› Interventions to stimulate green living and smart grid participation
STATE OF ART
MACROSCOPIC

› See patterns in large amounts of data
› Based on InfoViz and Pattern Recognition
› Employed e.g. for relations data in science and social networks

The AffinityViz Method for Interweaved Analysis of Resource Consumption and Occupant Data in Buildings

Mattias Nielsen, Robert S. Green, Kaj Grønbæk
GENERATING IDEAS
MOTIVATION

› Creating a research career in a niche with open opportunities?

› Get the next grant?

› Make a difference to the world?

› Get an idea to become an entrepreneur and become rich?

› ...
IDEA GENERATION: DISNEY METHOD

› Three creativity phaser from fantasy to reality

› 1. Dreamer "Want to" Phase:
 › State the specific goal in positive terms
 › Establish payoffs of the ideas

› 2. Realistic "How to" Phase:
 › Ensure progress is testable through sensory experience
 › Establish time frames and milestones for progress
 › Make sure it can be initiated and maintained by the appropriate person or group.

› 3. Critic "Chance to" Phase:
 › Define the context in which it is workable and problematic
 › Make sure it is ecologically sound and preserves any positive products of the current way(s) of achieving the goal.

› The three phases take place in different physical spaces
IDEA GENERATION: SIX THINKING HATS AND MANY MORE…

Edward de Bono

› **White Hat:**
 With this thinking hat you focus on the data available. Look at the information you have, and see what you can learn from it. This is where you analyze past trends, and try to extrapolate from historical data.

› **Red Hat:**
 'Wearing' the red hat, you look at problems using intuition, gut reaction, and emotion. Also try to think how other people will react emotionally. Try to understand the responses of people who do not fully know your reasoning.

› **Black Hat:**
 Using black hat thinking, look at all the bad points of the decision. Look at it cautiously and defensively. Try to see why it might not work. This is important because it highlights the weak points in a plan. It allows you to eliminate them, alter them, or prepare contingency plans to counter them.

› **Yellow Hat:**
 The yellow hat helps you to think positively. It is the optimistic viewpoint that helps you to see all the benefits of the decision and the value in it. Yellow Hat thinking helps you to keep going when everything looks gloomy and difficult.

› **Green Hat:**
 The Green Hat stands for creativity. This is where you can develop creative solutions to a problem. It is a freewheeling way of thinking, in which there is little criticism of ideas. A whole range of creativity tools can help you here.

› **Blue Hat:**
 The Blue Hat stands for process control. This is the hat worn by people chairing meetings. When running into difficulties because ideas are running dry, they may direct activity into Green Hat thinking. When contingency plans are needed, they will ask for Black Hat thinking.
POSSIBLE SOURCES OF IDEAS

› Societal challenges
 › Typically not IT-research from the outset
 › Formulated by politicians or funding sources 😊

› Empirical studies
 › Analysis of real life problem from a certain perspective,
 › Typically multidisciplinary and with collaborating partners

› The bright idea: A new UBI or application concept
 › Experimental solution to problem
 › Proof of concept prototype implementation + evaluation

› Theoretical Work
 › Survey of a research area or problem, propose new perspective
H2020 SOCIETAL CHALLENGES

1. Health, demographic change and wellbeing;
2. Food security, sustainable agriculture and forestry, marine and maritime and inland water research, and the Bioeconomy;
3. Secure, clean and efficient energy;
4. Smart, green and integrated transport;
5. Climate action, environment, resource efficiency and raw materials;
6. Europe in a changing world - inclusive, innovative and reflective societies;
7. Secure societies - protecting freedom and security of Europe and its citizens.
INNOVATION FOUNDATION CHALLENGES

1. Bioresources, food, health and lifestyle
2. Future energy technologies and systems
3. Future welfare – social innovation
4. Competitive environmental technologies
5. Coastal tourism
6. Salmon stock
7. Production systems and strategic growth technologies
8. Psychiatry
9. Healthcare and clinical research
10. Transport, infrastructure and drones
11. Ecology
RESEARCH IDEA EVOLVES (1)

Social Challenges
1. Smart transport
2. Better environment
3. Future energy tech

State-of-the-art
1. Mobile Sensing
2. Internet of Things
3. Visual analytics

"EcoSense" type project
Collect and analyse data to create energy awareness
RESEARCH IDEA EVOLVES (2)

Soceital challenges
1. Health and wellbeing
2. Healthcare
3. Future welfare

"Assistive Technology for ADHD"
Analyse child activity and invoke interventions to assist

State-of-the-art
1. Wearable Sensing
2. Physiological comp
3. Machine Learning
4. Cognitive training

Kaj Grønbæk
APRIL 2015
RESEARCH IDEA EVOLVES (3)

Social challenges
1. Health and wellbeing
2. Healthcare
3. Future welfare

"Interactive Ball Games"
Advanced sensor technology for kinesthetic interaction

State-of-the-art
1. Sensor technology
2. Kinesthetic interaction
3. Game design

Kaj Grønbæk APRIL 2015

"Interactive Ball Games"
WRAP UP
NOVEL RESEARCH IDEAS...

› Require multiple disciplines to meet
 › Often collective processes
› Are grounded in empirical understanding
 › Real world is an invaluable source of ideas
› Based on strong IT-research competences
 › Solid understanding of state-of-the-art
› Require ability to generate disruptive ideas
 › Brainstorming without barriers
 › Being selective - 1 out 100 ideas are worth pursuing
› Overall idea commenced in application phase
 › Detailed ideas and research contributions evolves
FOR GROUP WORK

Try to combine ideas from:

› Your deep technical research interest

with

› Some important societal challenges

› State some research ideas from this process!